China Girth Gear for Ball Mill Crusher and Rotary Kiln Production hypoid bevel gear

Solution Description

CITICIC is the casting & forging center in central-south China, possessing 50t electrical arc furnace, 60t LF ladle refining furnace, and 60t VD/VOD refining furnace, etc. We can pour 350t liquid steel 1 time and yields more than two hundred,000t of high quality liquid metal and can produce the high good quality steel of much more than 260 metal grades these kinds of as carbon steel, structural alloy metal and the structural steel, refractory steel and stainless steel of special prerequisite. The maximum bodyweight of casting, gray casting, graphite solid iron and non-ferrous casting is 200t, 30t, 20t and 205t individually.

 

Features:

Module Range: 10 Module to 70 Module.

Diameter: Min 800mm to16000 mm.

Excess weight: Max a hundred and twenty MT one piece.

3 different designs: Fabricated steel – cast ring – rolled plate

Standards / Certificates: • UNI EN ISO • AWS • ASTM • ASME • DIN

 

 

Rewards:

– Merchandise with Customers’ Designs

– Robust Machining & Heat Treatment method Capabilities

– Rigorous High quality Handle

– Prompt Supply

– Experience in Cooperation with Fortune 500 Organizations

 

Process:

Forging / Casting

Normalizing & Tempering-Evidence Machining

Quenching & Tempering

End Machining (Enamel Grinding)

 

 

We can offer you in various process problems remedies for A lot of Finish Markets and Apps

–Mining

–Metallurgy

–Electricity Generation

–Sugar

–Cement Plant

–Port Equipment

–Oil and organic

–Papermaking

–OEM equipment situation

–Common Industrial

 

 

Technical specs Of Equipment:

No.

Product

Description

one

Diameter

≤15m

two

Module

≤45

3

Substance

Cast Alloy Steel, Cast Carbon Steel, Cast Alloy Metal, Solid Carbon Metal

4

Composition From

Built-in, 50 % to 50 percent, 4 Parts and A lot more Pieces

     

five

Heat Therapy

Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering

     

6

Tooth Kind

Annular Equipment, Outer Gear Ring

seven

Common

ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

 

Inspection And Examination Outline Of Girth Gear:

No.

Merchandise

Inspection Region

Acceptance Standards

Inspection Stage

Certificates

one

Chemical 
Composition

Sample

Substance Need

When Smelting
Following Heat Therapy

Chemical Composition 
Report

2

Mechanical
Qualities

Sample (Test Bar on the Equipment Entire body)

Complex Need

Soon after Warmth Treatment

Mechanical Properties 
Report

three

Heat 
Remedy

Whole Human body

Manufacturing Regular

Throughout Warmth Treatment

Warmth Treatment method Report
Curves of Heat 
Remedy

4

Hardness 
Check

Tooth Surface, 3 Details For every 90°

Technical Requirement

Soon after Heat Therapy

Hardness Teat Report

Following Semi Finish 
Machining

         

5

Dimension 
Inspection

Entire Body

Drawing

Following Semi Finish

Machining

Dimension Inspection 
Report

End Machining

         

6

Magnetic Electrical power Check (MT)

Tooth Surface

Agreed Common

Following End Gear 
Hobbing

MT Report

7

UT

Spokes Elements

Agreed Normal

After Rough Machining

UT Report

Right after Welded

         

Soon after Semi Finish 
Machining

         

eight

PT

Defect Location

No Defect Indicated

Following Digging
Right after Welded

PT Report

9

Mark Inspection

Whole Body

Manufacturing Normal

Closing Inspection

Photos

10

Appearance Inspection

Entire Body

CIC’s Necessity

Just before Packing (Closing Inspection)

 

eleven

Anti-rust 
Inspection

Entire Entire body

Agreed Anti-rust Agent

Prior to Packing

Photos

twelve

Packing 
Inspection

Total Human body

Agreed Packing Sort

For the duration of Packing

Pictures

 

Services For Production Gear Ring:

No

Item

Description

one

Smelting & Casting Capacity

40t, 50t, 80t Sequence AC Electrical Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD / VOD Furnace
20×18m Huge Pouring Facility

We can pour 900t refining liquid metal 1 time, and obtain vacuum poured 600t steel ingots.

We can make the high good quality steel of far more than 260 metal grades as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of unique necessity. 

The greatest excess weight of casting metal, grey casting, graphite solid iron and non-ferrous casting is 600t, 200t, 150t and 20t independently.

2

Forging Functionality

The only 1 in the word, the most technologically advanced and the largest 
specification18500t Oil Push, equipped with 750t.m forging operation device
8400t Water Push
3150t Water Push
1600t Water Push
Φ5m Higher Precision Ring Mill (Germany)
Φ12m Substantial Precision Ring Mil
We can roll rings of various sections of carbon metal, alloy steel, higher temperature alloy metal and non-ferrous alloys this sort of as copper alloy, aluminum alloy and titanium alloy. 
Max. Diameter of rolled ring will be 12m.

3

Heat Therapy Ability

9×9×15m, 8×8×12m, 6×6×15m, 15×16×6.5m, 16×20×6m, 7×7×17m Sequence Warmth CZPT and Warmth Treatment Furnaces

φ2.0×30m, φ3.0×5.0m Sequence Heat Treatment Furnaces
φ5.0×2.5m, φ3.2×1.5m, φ3.0×5.0m, φ2.0×5m Sequence Carburizing Furnaces &
Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Kind CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft

four

Machining Capacity

1. ≥5m CNC Heavy Responsibility Vertical Lathes

12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
six.3m Weighty Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe

 

2. ≥5m Vertical Equipment Hobbing Equipment
15m CNC Vertical Equipment Hobbing Equipment
10m Equipment Hobbing Machine
8m Gear Hobbing Device
5m Equipment Hobbing Device
3m Equipment Hobbing Machining

 

three. Imported Substantial-precision Equipment Grinding Machines
.8m~3.5m CNC Molding Gear Grinding Equipment

 

four. Huge Boring & Milling Devices
220 CNC Floor-mounted Uninteresting & Milling Machine
two hundred CNC Ground-mounted Uninteresting & Milling Machine
a hundred and sixty CNC Ground-mounted Unexciting & Milling Machine

 

US $100-5,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Industry
Hardness: According to Customers′ Requirements
Manufacturing Method: Cast Gear, Forged Gear
Toothed Portion Shape: Spur Gear
Material: Cast Steel, Forged Steel
Type: Circular Gear

###

Customization:

###

No.

Item

Description

1

Diameter

≤15m

2

Module

≤45

3

Material

Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel

4

Structure From

Integrated, Half to Half, Four Pieces and More Pieces

     

5

Heat Treatment

Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering

     

6

Tooth Form

Annular Gear, Outer Gear Ring

7

Standard

ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

###

No.

Item

Inspection Area

Acceptance Criteria

Inspection Stage

Certificates

1

Chemical 
Composition

Sample

Material Requirement

When Smelting
After Heat Treatment

Chemical Composition 
Report

2

Mechanical
Properties

Sample (Test Bar on the Gear Body)

Technical Requirement

After Heat Treatment

Mechanical Properties 
Report

3

Heat 
Treatment

Whole Body

Manufacturing Standard

During Heat Treatment

Heat Treatment Report
Curves of Heat 
Treatment

4

Hardness 
Test

Tooth Surface, 3 Points Per 90°

Technical Requirement

After Heat Treatment

Hardness Teat Report

After Semi Finish 
Machining

         

5

Dimension 
Inspection

Whole Body

Drawing

After Semi Finish

Machining

Dimension Inspection 
Report

Finish Machining

         

6

Magnetic Power Test (MT)

Tooth Surface

Agreed Standard

After Finish Gear 
Hobbing

MT Report

7

UT

Spokes Parts

Agreed Standard

After Rough Machining

UT Report

After Welded

         

After Semi Finish 
Machining

         

8

PT

Defect Area

No Defect Indicated

After Digging
After Welded

PT Record

9

Mark Inspection

Whole Body

Manufacturing Standard

Final Inspection

Pictures

10

Appearance Inspection

Whole Body

CIC’s Requirement

Before Packing (Final Inspection)

 

11

Anti-rust 
Inspection

Whole Body

Agreed Anti-rust Agent

Before Packing

Pictures

12

Packing 
Inspection

Whole Body

Agreed Packing Form

During Packing

Pictures

###

No

Item

Description

1

Smelting & Casting Capability

40t, 50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD / VOD Furnace
20×18m Large Pouring Facility

We can pour 900t refining liquid steel one time, and achieve vacuum poured 600t steel ingots.

We can produce the high quality steel of more than 260 steel grades as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. 

The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.

2

Forging Capability

The only one in the word, the most technologically advanced and the largest 
specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
1600t Water Press
Φ5m High Precision Ring Mill (Germany)
Φ12m High Precision Ring Mil
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. 
Max. Diameter of rolled ring will be 12m.

3

Heat Treatment Capability

9×9×15m, 8×8×12m, 6×6×15m, 15×16×6.5m, 16×20×6m, 7×7×17m Series Heat Furnace and Heat Treatment Furnaces

φ2.0×30m, φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m, φ3.2×1.5m, φ3.0×5.0m, φ2.0×5m Series Carburizing Furnaces &
Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft

4

Machining Capability

1. ≥5m CNC Heavy Duty Vertical Lathes

12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe

 

2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining

 

3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines

 

4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

US $100-5,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Industry
Hardness: According to Customers′ Requirements
Manufacturing Method: Cast Gear, Forged Gear
Toothed Portion Shape: Spur Gear
Material: Cast Steel, Forged Steel
Type: Circular Gear

###

Customization:

###

No.

Item

Description

1

Diameter

≤15m

2

Module

≤45

3

Material

Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel

4

Structure From

Integrated, Half to Half, Four Pieces and More Pieces

     

5

Heat Treatment

Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering

     

6

Tooth Form

Annular Gear, Outer Gear Ring

7

Standard

ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

###

No.

Item

Inspection Area

Acceptance Criteria

Inspection Stage

Certificates

1

Chemical 
Composition

Sample

Material Requirement

When Smelting
After Heat Treatment

Chemical Composition 
Report

2

Mechanical
Properties

Sample (Test Bar on the Gear Body)

Technical Requirement

After Heat Treatment

Mechanical Properties 
Report

3

Heat 
Treatment

Whole Body

Manufacturing Standard

During Heat Treatment

Heat Treatment Report
Curves of Heat 
Treatment

4

Hardness 
Test

Tooth Surface, 3 Points Per 90°

Technical Requirement

After Heat Treatment

Hardness Teat Report

After Semi Finish 
Machining

         

5

Dimension 
Inspection

Whole Body

Drawing

After Semi Finish

Machining

Dimension Inspection 
Report

Finish Machining

         

6

Magnetic Power Test (MT)

Tooth Surface

Agreed Standard

After Finish Gear 
Hobbing

MT Report

7

UT

Spokes Parts

Agreed Standard

After Rough Machining

UT Report

After Welded

         

After Semi Finish 
Machining

         

8

PT

Defect Area

No Defect Indicated

After Digging
After Welded

PT Record

9

Mark Inspection

Whole Body

Manufacturing Standard

Final Inspection

Pictures

10

Appearance Inspection

Whole Body

CIC’s Requirement

Before Packing (Final Inspection)

 

11

Anti-rust 
Inspection

Whole Body

Agreed Anti-rust Agent

Before Packing

Pictures

12

Packing 
Inspection

Whole Body

Agreed Packing Form

During Packing

Pictures

###

No

Item

Description

1

Smelting & Casting Capability

40t, 50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD / VOD Furnace
20×18m Large Pouring Facility

We can pour 900t refining liquid steel one time, and achieve vacuum poured 600t steel ingots.

We can produce the high quality steel of more than 260 steel grades as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. 

The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.

2

Forging Capability

The only one in the word, the most technologically advanced and the largest 
specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
1600t Water Press
Φ5m High Precision Ring Mill (Germany)
Φ12m High Precision Ring Mil
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. 
Max. Diameter of rolled ring will be 12m.

3

Heat Treatment Capability

9×9×15m, 8×8×12m, 6×6×15m, 15×16×6.5m, 16×20×6m, 7×7×17m Series Heat Furnace and Heat Treatment Furnaces

φ2.0×30m, φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m, φ3.2×1.5m, φ3.0×5.0m, φ2.0×5m Series Carburizing Furnaces &
Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft

4

Machining Capability

1. ≥5m CNC Heavy Duty Vertical Lathes

12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe

 

2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining

 

3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines

 

4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

Spiral Gears for Right-Angle Right-Hand Drives

Spiral gears are used in mechanical systems to transmit torque. The bevel gear is a particular type of spiral gear. It is made up of two gears that mesh with one another. Both gears are connected by a bearing. The two gears must be in mesh alignment so that the negative thrust will push them together. If axial play occurs in the bearing, the mesh will have no backlash. Moreover, the design of the spiral gear is based on geometrical tooth forms.
Gear

Equations for spiral gear

The theory of divergence requires that the pitch cone radii of the pinion and gear be skewed in different directions. This is done by increasing the slope of the convex surface of the gear’s tooth and decreasing the slope of the concave surface of the pinion’s tooth. The pinion is a ring-shaped wheel with a central bore and a plurality of transverse axes that are offset from the axis of the spiral teeth.
Spiral bevel gears have a helical tooth flank. The spiral is consistent with the cutter curve. The spiral angle b is equal to the pitch cone’s genatrix element. The mean spiral angle bm is the angle between the genatrix element and the tooth flank. The equations in Table 2 are specific for the Spread Blade and Single Side gears from Gleason.
The tooth flank equation of a logarithmic spiral bevel gear is derived using the formation mechanism of the tooth flanks. The tangential contact force and the normal pressure angle of the logarithmic spiral bevel gear were found to be about twenty degrees and 35 degrees respectively. These two types of motion equations were used to solve the problems that arise in determining the transmission stationary. While the theory of logarithmic spiral bevel gear meshing is still in its infancy, it does provide a good starting point for understanding how it works.
This geometry has many different solutions. However, the main two are defined by the root angle of the gear and pinion and the diameter of the spiral gear. The latter is a difficult one to constrain. A 3D sketch of a bevel gear tooth is used as a reference. The radii of the tooth space profile are defined by end point constraints placed on the bottom corners of the tooth space. Then, the radii of the gear tooth are determined by the angle.
The cone distance Am of a spiral gear is also known as the tooth geometry. The cone distance should correlate with the various sections of the cutter path. The cone distance range Am must be able to correlate with the pressure angle of the flanks. The base radii of a bevel gear need not be defined, but this geometry should be considered if the bevel gear does not have a hypoid offset. When developing the tooth geometry of a spiral bevel gear, the first step is to convert the terminology to pinion instead of gear.
The normal system is more convenient for manufacturing helical gears. In addition, the helical gears must be the same helix angle. The opposite hand helical gears must mesh with each other. Likewise, the profile-shifted screw gears need more complex meshing. This gear pair can be manufactured in a similar way to a spur gear. Further, the calculations for the meshing of helical gears are presented in Table 7-1.
Gear

Design of spiral bevel gears

A proposed design of spiral bevel gears utilizes a function-to-form mapping method to determine the tooth surface geometry. This solid model is then tested with a surface deviation method to determine whether it is accurate. Compared to other right-angle gear types, spiral bevel gears are more efficient and compact. CZPT Gear Company gears comply with AGMA standards. A higher quality spiral bevel gear set achieves 99% efficiency.
A geometric meshing pair based on geometric elements is proposed and analyzed for spiral bevel gears. This approach can provide high contact strength and is insensitive to shaft angle misalignment. Geometric elements of spiral bevel gears are modeled and discussed. Contact patterns are investigated, as well as the effect of misalignment on the load capacity. In addition, a prototype of the design is fabricated and rolling tests are conducted to verify its accuracy.
The three basic elements of a spiral bevel gear are the pinion-gear pair, the input and output shafts, and the auxiliary flank. The input and output shafts are in torsion, the pinion-gear pair is in torsional rigidity, and the system elasticity is small. These factors make spiral bevel gears ideal for meshing impact. To improve meshing impact, a mathematical model is developed using the tool parameters and initial machine settings.
In recent years, several advances in manufacturing technology have been made to produce high-performance spiral bevel gears. Researchers such as Ding et al. optimized the machine settings and cutter blade profiles to eliminate tooth edge contact, and the result was an accurate and large spiral bevel gear. In fact, this process is still used today for the manufacturing of spiral bevel gears. If you are interested in this technology, you should read on!
The design of spiral bevel gears is complex and intricate, requiring the skills of expert machinists. Spiral bevel gears are the state of the art for transferring power from one system to another. Although spiral bevel gears were once difficult to manufacture, they are now common and widely used in many applications. In fact, spiral bevel gears are the gold standard for right-angle power transfer.While conventional bevel gear machinery can be used to manufacture spiral bevel gears, it is very complex to produce double bevel gears. The double spiral bevel gearset is not machinable with traditional bevel gear machinery. Consequently, novel manufacturing methods have been developed. An additive manufacturing method was used to create a prototype for a double spiral bevel gearset, and the manufacture of a multi-axis CNC machine center will follow.
Spiral bevel gears are critical components of helicopters and aerospace power plants. Their durability, endurance, and meshing performance are crucial for safety. Many researchers have turned to spiral bevel gears to address these issues. One challenge is to reduce noise, improve the transmission efficiency, and increase their endurance. For this reason, spiral bevel gears can be smaller in diameter than straight bevel gears. If you are interested in spiral bevel gears, check out this article.
Gear

Limitations to geometrically obtained tooth forms

The geometrically obtained tooth forms of a spiral gear can be calculated from a nonlinear programming problem. The tooth approach Z is the linear displacement error along the contact normal. It can be calculated using the formula given in Eq. (23) with a few additional parameters. However, the result is not accurate for small loads because the signal-to-noise ratio of the strain signal is small.
Geometrically obtained tooth forms can lead to line and point contact tooth forms. However, they have their limits when the tooth bodies invade the geometrically obtained tooth form. This is called interference of tooth profiles. While this limit can be overcome by several other methods, the geometrically obtained tooth forms are limited by the mesh and strength of the teeth. They can only be used when the meshing of the gear is adequate and the relative motion is sufficient.
During the tooth profile measurement, the relative position between the gear and the LTS will constantly change. The sensor mounting surface should be parallel to the rotational axis. The actual orientation of the sensor may differ from this ideal. This may be due to geometrical tolerances of the gear shaft support and the platform. However, this effect is minimal and is not a serious problem. So, it is possible to obtain the geometrically obtained tooth forms of spiral gear without undergoing expensive experimental procedures.
The measurement process of geometrically obtained tooth forms of a spiral gear is based on an ideal involute profile generated from the optical measurements of one end of the gear. This profile is assumed to be almost perfect based on the general orientation of the LTS and the rotation axis. There are small deviations in the pitch and yaw angles. Lower and upper bounds are determined as – 10 and -10 degrees respectively.
The tooth forms of a spiral gear are derived from replacement spur toothing. However, the tooth shape of a spiral gear is still subject to various limitations. In addition to the tooth shape, the pitch diameter also affects the angular backlash. The values of these two parameters vary for each gear in a mesh. They are related by the transmission ratio. Once this is understood, it is possible to create a gear with a corresponding tooth shape.
As the length and transverse base pitch of a spiral gear are the same, the helix angle of each profile is equal. This is crucial for engagement. An imperfect base pitch results in an uneven load sharing between the gear teeth, which leads to higher than nominal loads in some teeth. This leads to amplitude modulated vibrations and noise. In addition, the boundary point of the root fillet and involute could be reduced or eliminate contact before the tip diameter.

China Girth Gear for Ball Mill Crusher and Rotary Kiln Production     hypoid bevel gearChina Girth Gear for Ball Mill Crusher and Rotary Kiln Production     hypoid bevel gear
editor by czh 2023-01-13