China supplier Powder Metallurgy Stainless Steel Pinion Shaft Metal Plastic Spur Brass Small Spiral Angular Straight Bevel Small Gear worm gear winch

Product Description

Custom Titanium/Tungsten Alloys/Stainless Steel/MIM Powder Metallurgy Watch Clock Faucet Digital Camera gun Metal Slider Gears Metal Injection Molding OEM Parts

Product Description

Here are some products that can be made using MIM (Metal Injection Molding) process:

1. Medical implants and devices, such as bone screws, dental implants, and surgical instruments.
2. Firearms components, including triggers, hammers, and other small parts.
3. Aerospace and defense parts, such as gears, brackets, and housings.
4. Electronics components, including connectors, switches, and small gears.
5. Automotive components, including engine components, brake system components, and suspension parts.
6. Jewelry components, including clasps, bezels, and decorative elements.
7. Consumer goods parts, such as eyeglass frames, watch components, and small gadgets.
8. Industrial tool parts, including inserts, blades, and cutting tools.
9. Musical instrument components, such as guitar parts and trumpet valves.
10. Sporting equipment components, including golf club heads, fishing reel parts, and bike components.

These are just a few examples of the many products that can be made using the MIM process. With its ability to produce complex geometries and high-quality finishes, MIM is an ideal manufacturing process for a wide range of industries and applications.

MIM Parts Tolerance
The tolerances for MIM (Metal Injection Molding) parts are typically very close and precise. In general, tolerances for MIM parts can be as tight as +/- 0.5% of the dimension, or +/- 0.005 inches (0.127 mm), whichever is greater. However, the specific tolerance requirements will depend on the application and the design of the part.
The MIM process is capable of producing complex shapes with high accuracy and repeatability, making it possible to achieve very tight tolerances. Additionally, the material properties of MIM parts are highly consistent, which further contributes to the precision and consistency of the final product.
It’s important to note that achieving tight tolerances may require additional steps, such as post-processing or secondary operations, to ensure that the parts meet the required specifications. Additionally, the cost of producing parts with tight tolerances can be higher due to the additional time and effort required to achieve them.

MIM Parts Advantage

1. Complex geometries: MIM can produce complex shapes and geometries that are difficult or even impossible to achieve with traditional manufacturing methods. This enables designers to create parts with intricate features and high functionality.
2. High precision: The MIM process can achieve very tight tolerances, making it possible to produce parts with high accuracy and consistency.
3. Excellent surface finish: MIM parts have a high-quality surface finish, which eliminates the need for additional finishing operations.
4. Versatility: MIM can produce parts from a range of materials, including stainless steel, low alloy steels, tool steels, titanium alloys, and more. This makes it possible to create parts with a wide range of mechanical properties and applications.
5. Cost-effective: MIM is a cost-effective manufacturing process, especially for small to medium-scale production runs. It can eliminate the need for multiple manufacturing steps and reduce material waste, resulting in lower overall costs.
Overall, MIM parts offer a range of benefits for manufacturers and customers alike, including the ability to create complex geometries, high precision, excellent surface finishes, versatility, and cost-effectiveness.

 

Detailed Photos

 

The MIM Process

the MIM (Metal Injection Molding) process can be broken down into several steps:

1. Formulation: The first step in the MIM process is to formulate the feedstock. This typically involves mixing a fine metal powder with a thermoplastic binder material and sometimes a lubricant. The binder material helps to hold the metal particles together and enables them to flow like plastic.

2. Injection molding: The feedstock is then injected into a mold cavity using an injection molding machine. The mold is typically made from steel or other durable materials and is designed to produce the desired shape of the final part.

3. Debinding: Once the part has been molded, it is subjected to a debinding process, which removes the binder material from the metal particles. This is typically done by heating the part in a CHINAMFG or using a solvent.

4. Sintering: After debinding, the part is subjected to a high-temperature sintering process. This process fuses the metal particles together, forming a CHINAMFG metal part with the desired mechanical properties. The sintering process can take several hours to complete, depending on the size and complexity of the part.

5. Finishing: After sintering, the final part may undergo additional finishing operations, such as polishing, machining, or plating, to achieve the desired surface finish and tolerances.

Overall, the MIM process is a highly versatile and precise manufacturing method that is capable of producing complex metal parts with high accuracy and consistency. It is often used in industries such as medical devices, firearms, aerospace, electronics, and automotive, where precision, complexity, and cost-effectiveness are key considerations.

 

Product Parameters

The Material of the MIM Product

Material System Material Composition Typical Applications
Low Alloy Steel Fe-2Ni , Fe-8Ni Automobile, machinery, and other industries, particularly in structural parts
Stainless Steel 316L,17-4PH,420,440C Medical equipment, clocks, watches
Carbide WC-Co Various tools, clocks, watches
Ceramic Al2O3 ,ZrO2 ,SiO2 IT electronics, daily necessities, watches
Heavy Alloys W-Ni-Fe,W-Ni-Cu,W-Cu The arms industry, communications, daily necessities
Titanium Ti,Ti-6Al-4V Medical and Firearm structural parts
Magnetic Materials Fe, NdFeB,SmCo5, Fe-Si Magnetic properties of the various components
Tool Steel CrMo4,M2 Tools

Typical properties of several MIM materials

Materials Density Hardness Tensile Strength Elongation
g/cm³ Rockwell Mpa %
Fe-based alloys MIM-2200(Sintered) 7.65 45HRB 290 40
MIM-2700(Sintered) 7.65 69HRB 440 26
MIM-4605(Sintered) 7.62 62HRB 415 15
MIM-4605(Quenching and tempering) 7.62 48HRC 1655 2
Stainless steel MIM-316L(Sintered) 7.92 67HB 520 50
MIM-17-4PH(Sintered) 7.5 27HRC 900 6
MIM-17-4PH(Sintered) 7.5 40HRC 1185 6
MIM-430L(Sintered) 7.5 65HRB 415 25
Tungsten alloys 95%W-Ni-Fe 18.1 30 960 25
97%W-Ni-Fe 18.5 33 940 15
Carbide YG8X 14.9 HRA90 Bending Strength 2300  
Fine Ceramics Al2O3 3.98 HRA92 Bending Strength 2300  

Packaging & Shipping

 

  1. We prefer DHL or TNT express or other air freight between 1kg-100kg.
  2. we choose sea freight of more than 100kg or more than 1CBM
  3. As per customized specifications.

 

Company Profile

About us

HangZhou CHINAMFG Technology Co., Ltd has been an established manufacturer since 2008. It is located in HangZhou City, ZheJiang Province, which is close to ZheJiang . The CHINAMFG Technology is fully equipped with all kinds of metal injection molding equipment and Powder Metallurgy equipment.
We specialize in tooling design and product development. We can work with materials such as low alloy steel, stainless steel, tool steel, and titanium steel. We serve a diverse range of applications in diverse industries – Automotive, Industrial, Electronics, and Medical. As 1 of the leading suppliers of metal parts in China, we offer high-quality, custom, precision parts at competitive prices according to customer drawings and specifications.

Our advantage in the industrial market is that we can provide competitive prices for our customers. We have a completely competitive metal parts provider and supply chain solution. With a strong focus on continual improvement, we only utilize best practices to ensure that the work we do for our customers is done in the most efficient, precise, and cost-effective way possible.
The focus of Machining Design Associated has been and always will be on developing and maintaining lasting relationships with customers. We are proud to be large enough to handle our customer needs yet small enough to offer the personal attention customers appreciate.

We have full OEM Experience worldwide, providing them with One-stop solutions for a broad range of applications. We believe in quality and on-time delivery is our corn idea in order to meet our customers’ requirements.

We look CHINAMFG to cooperating with you!

 

Our Advantages

Why Choice Emitech as your MIM parts supplier, there may be several reasons why they could be a good choice:
1. Experience: CHINAMFG may have significant experience in the MIM industry, with a proven track record of producing high-quality parts for various applications.
2. Precision: CHINAMFG may use advanced technology and equipment to manufacture MIM parts with tight tolerances and high precision, ensuring consistent quality.
3. Customization: CHINAMFG may work closely with its customers to develop customized MIM parts that meet specific requirements and specifications.
4. Material Variety: CHINAMFG may offer a wide range of material options for MIM, including stainless steel, low alloy steels, tool steels, titanium alloys, and more, enabling their customers to choose the best material for their applications.
5. Cost-effectiveness: CHINAMFG may offer competitive pricing for their MIM parts, making it a cost-effective option for small to medium-scale production runs.
If CHINAMFG meets your specific needs and requirements, they may be a good choice for your MIM parts supplier, based on factors such as experience, precision, customization, material variety, and cost-effectiveness.

After Sales Service

Factory Supply High Demand aluminum machining parts factory
We usually provide 12 Months of repair service. If our duty, we will respond to send the new parts.

Our Service

 

Our Processing CNC center, CNC milling, CNC turning, drilling, grinding, bending, stamping, tapping,
Surface finish Polishing, sandblasting, Zinc-plated, nickel-plated, chrome-plated, silver-plated, gold-plated, imitation gold-plated,
Tolerance 0.05mm~0.1mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP
Packaging Plastic bag/Standard package / Carton or Pallet / As per customized specifications
Payment Terms 30 -50%T/T in advance, 70-50% balance before delivery; Pay Pal or Western Union is acceptable.
Trade terms EXW, FOB, and CIF, As per the customer’s request
Shipment Terms

1)We prefer DHL, TNT express, or other air freight between 1kg-100kg.

2) we prefer sea freight of more than 100kg or more than 1CBM
3) As per customized specifications.

Note The CNC machining parts are usually custom-made based on the customer’s drawings and samples. So we need the Down Payment

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Repaire
Warranty: Half a Year
Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Customization:
Available

|

Customized Request

bevel gear

What lubrication is required for a bevel gear?

Lubrication is crucial for the optimal performance, longevity, and reliability of bevel gears. Proper lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and efficient power transmission. Here’s a detailed explanation of the lubrication requirements for a bevel gear:

Bevel gears typically require a lubricant that provides sufficient film strength, viscosity, and protection against wear and corrosion. The specific lubrication requirements may vary depending on factors such as the gear material, operating conditions, load, speed, and environmental factors. It’s important to follow the manufacturer’s recommendations and guidelines for the appropriate lubricant to use in your specific application. Here are some key considerations:

  • Lubricant Type: Common lubricant types used for bevel gears include mineral oils, synthetic oils, and greases. Mineral oils are often suitable for standard applications, while synthetic oils offer enhanced performance in terms of temperature resistance, oxidation stability, and load-carrying capacity. Greases are used when a semi-solid lubricant is preferred, providing excellent adhesion and sealing properties.
  • Viscosity: The lubricant viscosity is crucial for maintaining an adequate lubricating film between the gear teeth. The viscosity should be selected based on the operating conditions, such as temperature and speed. Higher temperatures and speeds generally require lubricants with higher viscosity to ensure proper lubrication and prevent metal-to-metal contact.
  • Extreme Pressure (EP) Additives: In applications with high loads and potential for boundary lubrication conditions, lubricants with extreme pressure (EP) additives are recommended. EP additives provide additional protection against wear and ensure the lubricant film remains intact under high-pressure conditions, reducing the risk of gear tooth damage.
  • Corrosion Protection: Bevel gears operating in corrosive environments or exposed to moisture may require lubricants with corrosion inhibitors or rust-preventive additives. These additives help protect the gear surfaces from rust and corrosion, extending the gear’s lifespan and maintaining its performance.
  • Compatibility: It’s crucial to consider the compatibility between the lubricant and the gear materials. Some gear materials may have specific requirements or restrictions regarding the types of lubricants that can be used. For example, certain plastics or elastomers used in bevel gear applications may be sensitive to certain lubricant additives, necessitating the use of compatible lubricants.
  • Lubrication Method: The lubrication method for bevel gears can vary depending on the design and accessibility of the system. Lubrication can be performed through methods such as oil bath lubrication, oil mist lubrication, circulating oil systems, or grease application. The appropriate lubrication method should be determined based on the gear system’s design and the manufacturer’s recommendations.

It’s essential to regularly monitor the lubricant condition and perform maintenance tasks such as oil analysis, lubricant replenishment, or scheduled lubricant changes as recommended by the gear manufacturer or based on the operating conditions. This helps ensure the lubricant’s effectiveness and the overall performance of the bevel gear system.

In summary, the lubrication requirements for a bevel gear include selecting the appropriate lubricant type, considering viscosity, extreme pressure additives, corrosion protection, compatibility with gear materials, and choosing the suitable lubrication method. Following the manufacturer’s recommendations and performing regular maintenance tasks are essential to maintain proper lubrication and ensure optimal performance and longevity of the bevel gear system.

bevel gear

Can bevel gears be used in automotive applications?

Yes, bevel gears can be used in automotive applications due to their unique characteristics and ability to transmit power between intersecting shafts at different angles. Here’s a detailed explanation:

Bevel gears are commonly found in various automotive systems and components, offering several advantages for specific applications. Here are some key automotive applications where bevel gears are utilized:

  1. Differential: One of the primary applications of bevel gears in automotive systems is in the differential mechanism. The differential is responsible for distributing torque between the drive wheels while allowing them to rotate at different speeds, especially during cornering. Bevel gears, specifically hypoid gears, are used in the differential to transfer power from the driveshaft to the wheel axles at right angles. The compact size and high torque transmission capability of bevel gears make them suitable for this critical drivetrain component.
  2. Power Transfer: Bevel gears are utilized in automotive power transfer systems, such as transfer cases and drivelines. Transfer cases, commonly found in four-wheel drive (4WD) and all-wheel drive (AWD) vehicles, transfer power from the transmission to the front and rear axles. Bevel gears enable the necessary change in direction and torque transmission between the input and output shafts of the transfer case. Similarly, bevel gears can be used in drivelines to transfer power between differentials or between the transmission and the axles.
  3. Steering Systems: Bevel gears play a role in automotive steering systems, particularly in rack-and-pinion steering mechanisms. In these systems, bevel gears are used to convert the rotational motion of the steering wheel into the linear motion required for steering. Bevel gears help change the direction of motion, enabling the driver to control the vehicle’s steering angle. The compact size and precise motion transmission characteristics of bevel gears make them suitable for these steering applications.
  4. Auxiliary Systems: Bevel gears find application in various auxiliary automotive systems. For example, they can be used in engine timing systems to drive camshafts and synchronize valve operation. Bevel gears can also be employed in automotive differentials with limited-slip or locking capabilities, enhancing traction and vehicle stability in challenging road conditions. Additionally, they can be found in power seat adjusters, sunroof mechanisms, and other vehicle systems where torque transmission at different angles is required.

Bevel gears used in automotive applications are typically designed to withstand high loads, operate with minimal noise and vibration, and provide reliable power transmission. They are often manufactured from durable materials, such as alloy steels, and undergo heat treatment processes to enhance their strength and wear resistance.

It is important to note that the specific design and selection of bevel gears for automotive applications depend on factors such as torque requirements, space limitations, operating conditions, and cost considerations. Gear engineers and automotive manufacturers carefully consider these factors to ensure optimal performance, efficiency, and reliability in automotive systems.

In summary, bevel gears are extensively used in automotive applications, including differentials, power transfer systems, steering mechanisms, and auxiliary systems. Their ability to transmit power at varying angles, compact size, and robust construction make them well-suited for the demanding requirements of the automotive industry.

bevel gear

How do you calculate the gear ratio of a bevel gear?

Calculating the gear ratio of a bevel gear involves determining the ratio between the number of teeth on the driving gear (pinion) and the driven gear (crown gear). Here’s a detailed explanation of how to calculate the gear ratio of a bevel gear:

The gear ratio is determined by the relationship between the number of teeth on the pinion and the crown gear. The gear ratio is defined as the ratio of the number of teeth on the driven gear (crown gear) to the number of teeth on the driving gear (pinion). It can be calculated using the following formula:

Gear Ratio = Number of Teeth on Crown Gear / Number of Teeth on Pinion Gear

For example, let’s consider a bevel gear system with a crown gear that has 40 teeth and a pinion gear with 10 teeth. The gear ratio can be calculated as follows:

Gear Ratio = 40 / 10 = 4

In this example, the gear ratio is 4:1, which means that for every four revolutions of the driving gear (pinion), the driven gear (crown gear) completes one revolution.

It’s important to note that the gear ratio can also be expressed as a decimal or a percentage. For the example above, the gear ratio can be expressed as 4 or 400%.

Calculating the gear ratio is essential for understanding the speed relationship and torque transmission between the driving and driven gears in a bevel gear system. The gear ratio determines the relative rotational speed and torque amplification or reduction between the gears.

It’s worth mentioning that the gear ratio calculation assumes ideal geometries and does not consider factors such as backlash, efficiency losses, or any other system-specific considerations. In practical applications, it’s advisable to consider these factors and consult gear manufacturers or engineers for more accurate calculations and gear selection.

In summary, the gear ratio of a bevel gear is determined by dividing the number of teeth on the crown gear by the number of teeth on the pinion gear. The gear ratio defines the speed and torque relationship between the driving and driven gears in a bevel gear system.

China supplier Powder Metallurgy Stainless Steel Pinion Shaft Metal Plastic Spur Brass Small Spiral Angular Straight Bevel Small Gear worm gear winchChina supplier Powder Metallurgy Stainless Steel Pinion Shaft Metal Plastic Spur Brass Small Spiral Angular Straight Bevel Small Gear worm gear winch
editor by CX 2023-12-19