China Best Sales Gear Box Reducer Bevel Pinion Gear with 17CrNiMo6 Steel gear cycle

Product Description

Gear Box Reducer Bevel Pinion Gear with 17CrNiMo6 Steel
 

Product Description

ball mill parts for pinion gear 

CITICMC  Pinion Gears offered find extensive application in Sponge Iron Plants that have running capacities of -50TPD, 100TPD, 300TPD, 350TPD, 500TPD. Further, these also provide functionality as integral pinion shaft for cement plants/ball mills and as pinion & pinion assemblies for Phosphate mining plants, Alumina, Kaolin-Bentonite plants and others. Further, we can also custom design these in finish specifications as demanded by the customers.

Pinion gear material
42CRMO STEEL DATA
CHEMICAL LIST
C : 0.38-0.45%
Si: 0.17-0.37%
Mn: 0.50-0.80%
S : Allow residual content <0.035%
P : Allow residual content <0.035%
Cr:  0.90-1.20%
Ni: Allow residual content <0.030% Cu: Allow residual content <0.030%
Mo: 0.15-0.25%
MECHANICAL DATA
Tensile Strength σb (MPa): >1080(110)
Yield point σs (MPa): >930(95)
Elongation σ5 (%): >12
Reduction of area ψ (%): >45 Akv (J): Impact absorbing energy Akv(J): >63
Impact toughness value αkv (J/cm2): >78(8)
Hardness: <217HB
Sample size: The blank size of the sample is 25mm
PHYSICAL DATA
Critical point temperature (approximate value): Ac1=730ºC, Ac3=800ºC, Ms=310ºC
Linear expansion coefficient: temperature: 20~100ºC/20~200ºC/20~300ºC /20 ~400ºC/20~500ºC /20~600ºC
linear expansivity: 11.1x10K/12.1x10K/12.9x10K/13.5x10K/13.9x10K14.1x10K

Pinion for:-Sponge iron plant-50TPD, 100TPD,300TPD,350TPD,500TPDIntegral pinion shaft for cement plant or ball millsPinion & pinion assemblies for Alumina, kaolin-bentonite plants, phosphate mining plantMain Type of pinion applications as given below for the all above mentioned plants:Kiln PinionCooler pinionPinion shaftPinion assembled with shaft, bearings, plummer blocksIntegral pinion shaft upto 3 mtr total lentgh.

Gear Box Reducer Bevel Pinion Gear with 17CrNiMo6 Steel
 

 

  Machining Equipment

Fabrication Equipment

Casting & Forging Equipment

Heat treatment Equipment

 

Quality testing equipment

 

         Spectrometer

 

    Ultrasonic flaw detector

 

  Carbon and sulfur analyzer

 

   X-ray detection apparatus

 

      Brinell microscope

 

       Leeb hardness tester

 

Company Profile

FAQ

Q: Why we believe in HangZhou CHINAMFG industries co., ltd:
A: 1. More than 30 years experience.
     2.We are the leading professional supplier of mining machinery, construction machinery, machines casting and forged parts.
     3. All products achieved ISO9901:2000 quality management certificate and CE, ROHS certificates.
 
Q:Delivery time:
A: Parts lead time 1-2months, machines 2-3months.
 
Q:Payment terms:
A: Accept payment type: T/T, L/C, Western union,Cash.
30% deposit when signed contract. Full payment paid before shipping.
 
Q: Quality warranty?
A: Guarantee time: 1 year for main machinery. If something wrong we will provide the technical advice and find solution immediately. For those wearing parts we guarantee high quality parts for long-term supply.
 
Q: After sales service?
A: We can supply technical guide for machines running test and parts maintenance if end user needs.

 

After Sales Service

ZTIC Heavy Industries is your business partner in the After Market.
ZTIC  able to provide:
1.    ENGINEERED SPARES –  DESIGN AND MANUFACTURING
2.    LARGE VOLUME STEEL AND IRON CASTING FOUNDARIES
3.    HUGE MACHINE SHOP CAPABILITIES
4.    TRAINING PROGRAMMES
5.    PREVENTATIVE MAINTENANCE PROGRAMS
6.    PREVETATIVE MAINTENANCE SERVICES
7.    COMPREHENSIVE MAINTENANCE PROGRAMS

 
ZTIC’s Field Service Engineers are trained specifically in the CITIC brand group products but are capable of undertaking the servicing of other OEM brands.
Our technicians are equipped with the most advanced technological diagnostic equipment available to trouble shoot your equipment to optimise performance and minimise down time.
ZTIC also has an extensive capability in supplying all you consumable and electrical/ mechanical spare part needs.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery
Hardness: Hardened Tooth Surface
Gear Position: as Required
Manufacturing Method: Cast Gear
Toothed Portion Shape: Curved Gear
Material: Stainless Steel
Customization:
Available

|

Customized Request

bevel gear

Can bevel gears be used in precision manufacturing equipment?

Yes, bevel gears can be used in precision manufacturing equipment due to their ability to transmit motion and power at varied angles with high accuracy. Here’s a detailed explanation:

Bevel gears are well-suited for precision manufacturing equipment where precise motion control, high torque transmission, and accurate angular positioning are essential. Here are some key reasons why bevel gears are suitable for such applications:

  1. Angular Transmission: Bevel gears excel at transmitting motion and power between intersecting shafts at different angles. In precision manufacturing equipment, where components often require precise angular positioning, bevel gears provide an efficient means of achieving the necessary motion transfer. They allow for smooth and accurate rotation, ensuring precise alignment and positioning of machine components.
  2. Compact Design: Bevel gears have a compact design, making them suitable for applications where space is limited. In precision manufacturing equipment, where machines often have complex structures and require tight integration of components, the compact size of bevel gears allows for efficient utilization of available space. This is particularly advantageous when designing compact and high-precision machinery.
  3. High Torque Transmission: Bevel gears are capable of transmitting high torque loads, making them suitable for precision manufacturing equipment that requires the transmission of substantial power. Whether it’s in rotary tables, indexing mechanisms, or gearboxes, bevel gears can efficiently transfer high torque while maintaining accuracy and precision in motion control.
  4. Accuracy and Backlash Control: In precision manufacturing equipment, minimizing backlash and ensuring accurate motion control are critical. Bevel gears can be manufactured with high precision to achieve tight tolerances and minimal backlash. This allows for precise positioning, accurate motion control, and repeatable performance, which are essential in precision manufacturing processes.
  5. Customization Options: Bevel gears can be customized to meet specific requirements of precision manufacturing equipment. Different tooth profiles, gear ratios, materials, and surface treatments can be employed to optimize the gear performance for specific applications. This customization capability allows gear engineers to design bevel gears that precisely match the needs and specifications of the equipment.

Examples of precision manufacturing equipment where bevel gears are commonly used include CNC machines, milling machines, gear hobbing machines, rotary tables, indexing mechanisms, and various types of gearboxes. These machines rely on the precise and reliable motion transmission provided by bevel gears to achieve accurate and high-quality manufacturing processes.

It is important to note that the selection and design of bevel gears for precision manufacturing equipment should consider factors such as load requirements, speed, operating conditions, backlash limitations, and noise considerations. Gear engineers and machine designers often conduct detailed analyses and calculations to ensure the bevel gears meet the necessary performance criteria and contribute to the overall precision and reliability of the equipment.

In summary, bevel gears are well-suited for precision manufacturing equipment due to their ability to provide accurate angular transmission, compact design, high torque transmission, and customization options. Incorporating bevel gears in precision machinery contributes to precise motion control, accurate positioning, and reliable performance, enabling the production of high-quality and precise manufactured components.

bevel gear

How do you address noise and vibration issues in a bevel gear system?

Noise and vibration issues in a bevel gear system can be disruptive, affect performance, and indicate potential problems. Addressing these issues involves identifying the root causes and implementing appropriate solutions. Here’s a detailed explanation:

When dealing with noise and vibration in a bevel gear system, the following steps can help address the issues:

  • Analyze the System: Begin by analyzing the system to identify the specific sources of noise and vibration. This may involve conducting inspections, measurements, and tests to pinpoint the areas and components contributing to the problem. Common sources of noise and vibration in a bevel gear system include gear misalignment, improper meshing, inadequate lubrication, worn gears, and resonance effects.
  • Check Gear Alignment: Proper gear alignment is crucial for minimizing noise and vibration. Misalignment can cause uneven loading, excessive wear, and increased noise. Ensure that the bevel gears are correctly aligned both axially and radially. This can involve adjusting the mounting position, shimming, or realigning the gears to achieve the specified alignment tolerances.
  • Optimize Gear Meshing: Proper gear meshing is essential for reducing noise and vibration. Ensure that the gear teeth profiles, sizes, and surface qualities are suitable for the application. Improper tooth contact, such as excessive or insufficient contact, can lead to noise and vibration issues. Adjusting the gear tooth contact pattern, modifying gear profiles, or using anti-backlash gears can help optimize gear meshing and reduce noise and vibration.
  • Ensure Adequate Lubrication: Proper lubrication is critical for minimizing friction, wear, and noise in a bevel gear system. Insufficient lubrication or using the wrong lubricant can lead to increased friction and noise generation. Check the lubrication system, ensure the correct lubricant type and viscosity are used, and verify that the gears are adequately lubricated. Regular lubricant analysis and maintenance can help maintain optimal lubrication conditions and reduce noise and vibration.
  • Inspect and Replace Worn Gears: Worn or damaged gears can contribute to noise and vibration problems. Regularly inspect the gears for signs of wear, pitting, or tooth damage. If significant wear is detected, consider replacing the worn gears with new ones to restore proper gear meshing and reduce noise. Additionally, ensure that the gear materials are suitable for the application and provide adequate strength and durability.
  • Address Resonance Effects: Resonance can amplify noise and vibration in a bevel gear system. Identify any resonant frequencies within the system and take steps to mitigate their effects. This may involve adjusting gear parameters, adding damping materials or structures, or altering the system’s natural frequencies to minimize resonance and associated noise and vibration.

Implementing these steps can help address noise and vibration issues in a bevel gear system. However, it is important to note that each system is unique, and the specific solutions may vary depending on the circumstances. Consulting with experts in gear design and vibration analysis can provide valuable insights and ensure effective resolution of noise and vibration problems.

bevel gear

What industries commonly use bevel gears?

Bevel gears find applications in various industries where changes in direction or speed of rotational motion are required. Here’s a detailed explanation of the industries commonly using bevel gears:

  • Automotive Industry: Bevel gears are widely used in the automotive industry, particularly in differentials. Differentials are responsible for distributing torque between the driving wheels of a vehicle, allowing them to rotate at different speeds when turning. Bevel gears in differentials transmit power from the engine to the wheels, enabling smooth cornering and improved traction.
  • Mechanical Engineering and Manufacturing: Bevel gears are employed in mechanical power transmission systems in various machinery and equipment used in the manufacturing industry. They are used in applications such as power tools, machine tools, conveyors, and printing presses. By meshing with other bevel gears or with spur gears, they transmit torque and power efficiently from one shaft to another, accommodating changes in direction and speed.
  • Marine and Naval Industry: Bevel gears are extensively used in marine propulsion systems, including boats and ships. They are commonly found in the propulsion shaft line, where they transmit torque from the engine to the propeller shaft, allowing the vessel to move through water. Bevel gears in marine applications are designed to withstand high loads, resist corrosion, and operate efficiently in harsh environments.
  • Aerospace Industry: Bevel gears are utilized in various aerospace applications. They are employed in aircraft landing gear systems, where they transmit torque from the hydraulic motor to extend or retract the landing gear. Bevel gears are also found in helicopter rotor systems, providing the necessary power transmission to rotate the rotor blades.
  • Railway and Transportation Industry: Bevel gears play a crucial role in railway systems, particularly in locomotives and rolling stock. They are used in the transmission systems to transfer power from the engine to the wheels. Bevel gears ensure smooth and efficient power transfer, enabling the train to move forward or backward while negotiating curves on the track.
  • Industrial Machinery and Robotics: Bevel gears are extensively employed in various industrial machinery, such as milling machines, lathes, and industrial robots. They facilitate changes in direction and speed of rotational motion, enabling precise positioning, accurate cutting, and smooth operation of the machinery.
  • Mining and Construction Industry: Bevel gears are used in mining and construction equipment to transfer power and torque in heavy-duty applications. They are found in equipment such as excavators, bulldozers, and crushers, where they provide reliable power transmission in challenging environments.

These are just a few examples of the industries commonly using bevel gears. Their ability to transmit power, change the direction of rotational motion, and accommodate intersecting shafts makes them versatile and suitable for a wide range of applications in various industries.

In summary, bevel gears are commonly used in industries such as automotive, mechanical engineering and manufacturing, marine and naval, aerospace, railway and transportation, industrial machinery and robotics, and mining and construction. Their applications span across industries where changes in direction or speed of rotational motion are essential for efficient and reliable operation.

China Best Sales Gear Box Reducer Bevel Pinion Gear with 17CrNiMo6 Steel gear cycleChina Best Sales Gear Box Reducer Bevel Pinion Gear with 17CrNiMo6 Steel gear cycle
editor by CX 2024-04-15